Компонент ОПОП 13.03.02 Электроэнергетика и электротехника (профиль) Электроснабжение наименование ОПОП

Б1.О.22 шифр дисциплины

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Дисциплины (модуля)	Моделирование информационных структур систем электроснабжения
Разработчики: <u>Гомонов А.Д.</u> <u>к.т.н., доцент</u> кафедры СЭиТ	Утверждено на заседании кафедры <u>строительства, энергетики и транспорта</u> <u>наименование кафедры</u> протокол № 07 от 07.03. 20 24 г.
	Заведующий кафедрой <u>СЭ и Т</u> — <u>Челтыбашев А.А.</u> ФИО

Фонд оценочных средств дисциплины (модуля)

1. Характеристика результатов обучения по дисциплине

Код и		Уровень освоения компетенции			
наименован ие компетенци и (части компетенци и)	Этапы (индикаторы) освоения компетенций	Ниже порогового	Пороговый	Продвинутый	Высокий
	ОПК-2.4. Применяет математический аппарат численных методов ОПК-2.5. Демонстрирует понимание физических явлений и применяет законы	Фрагментарн ые знания о механизмах применения математический аппарат численных методов	Общие, но не структурирова нные знания о механизмах применения математический аппарат численных методов	Сформирован ные, но содержащие отдельные пробелы знания о механизмах применения математический аппарат численных методов	Сформирован ные систематическ ие знания о механизмах применения математический аппарат численных методов
Компетенция ОПК-2. Способен применять соответствующ ий физикоматематический аппарат, методы анализа и моделирования, теоретического и эксперименталь ного	механики, термодинамики, электричества и магнетизма	Частично освоенное умение о понимании физических явлений и применении законов механики, термодинамики, электричества и магнетизма	В целом успешно, но не систематическ и осуществляемы е понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	В целом успешные, но содержащие отдельные пробелы понимания физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	Сформирован ное умение выбирать и применятьть законы механики, термодинамики, электричества и магнетизма
исследования при решении профессиональ ных задач		Фрагментарно е применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения	В целом успешное, но не систематическ ое применение навыков решения задач моделирования информационн ых структур систем электроснабже ния	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения	Успешное и систематическ ое применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения
ПК-1 Способен участвовать в проектировании	ИПК-1.1 Выполняет сбор и анализ данных	Фрагментарн ые знания о выполнении	Общие, но не структурирова нные знания о	Сформирован ные, но содержащие	Сформирован ные систематическ

систем электроснабжен ия объектов	для проектирования систем электроснабжен ия объектов ИПК-1.3 Обосновывает выбор параметров электрооборудов ания систем электроснабжен	сбора и анализа данных для проектирования систем электроснабжени я объектов	выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	отдельные пробелы знания о выполнении сбора и анализа данных для проектирования систем электроснабжени я объектов	ие знания о выполнении сбора и анализа данных для проектирования систем электроснабжени я объектов
	ия объектов, учитывая технические ограничения	Частично освоенное умение выбора параметров электрооборудов ания систем электроснабжени я объектов, учитывая технические ограничения	В целом успешно, но не систематическ и осуществляемы е умения выбора параметров электрооборудова ния систем электроснабжения объектов, учитывая технические ограничения	В целом успешные, но содержащие отдельные пробелы в умении выбора параметров электрооборудов ания систем электроснабжени я объектов, учитывая технические ограничения	Сформирован ное умение выбора параметров электрооборудов ания систем электроснабжени я объектов, учитывая технические ограничения
		Фрагментарно е применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения	В целом успешное, но не систематическ ое применение навыков решения задач моделирования информационн ых структур систем электроснабже ния	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения	Успешное и систематическ ое применение навыков решения задач моделировани я информацион ных структур систем электроснабж ения

2. Перечень оценочных средств для контроля сформированности компетенций в рамках дисциплины

- 2.1 Оценочные средства для проведения текущего контроля успеваемости:
- > комплект заданий для выполнения лабораторных практических работ;
- > комплект заданий для практических занятий;
- 2.2 Оценочные средства для проведения промежуточной аттестации по дисциплине (модулю), в том числе курсовым работам (проектам)/ НИР в форме:
 - > экзамена.

Перечень компетенций (части компетенции)	Этапы формирования (индикаторы достижений) компетенций	Оценочные средства текущего контроля	Оценочные средства промежуточной аттестации
Компетенция ОПК-2. Способен применять соответствующий физико- математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	ОПК-2.4. Применяет математический аппарат численных методов ОПК-2.5. Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	Задания ПР, Задания ЛР, курсовая работа, контрольная работа. Задания ПР, курсовая работа, контрольная работа.	Экзаменационные билеты
ПК-1 Способен участвовать в проектировании систем электроснабжения объектов	ИПК-1.1 Выполняет сбор и анализ данных для проектирования систем электроснабжения объектов ИПК-1.3 Обосновывает выбор параметров электрооборудования систем электроснабжения объектов, учитывая технические ограничения	Задания ПР, Задания ЛР Задания ПР. курсовая работа, контрольная работа. Задания ПР. курсовая работа, контрольная работа.	Экзаменационные билеты

3. Критерии и шкала оценивания заданий текущего контроля знаний, умений, навыков

3.1 Критерии и шкала оценивания практических работ

С целью развития умений и навыков в рамках формируемых компетенций по дисциплине предполагается выполнение практических работ, что позволяет расширить процесс познания, раскрыть понимание прикладной значимости осваиваемой дисциплины.

Перечень практических работ, описание порядка выполнения и защиты работы, требований к результатам работы, структуре и содержанию отчета и т.п. представлен в методических указаниях по дисциплине.

Компетенция ОПК-2. Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач формируемая и оцениваемая на практических работах

	омированности этаг		
Знаний	Умений Навыков		Критерии оценивания
Сформированны е систематические знания о механизмах применения математический аппарат численных методов	Сформированное умение выбирать и применять законы механики, термодинамики, электричества и магнетизма	Успешное и систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью и правильно. Отчет по практической работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
Сформированны е, но содержащие отдельные пробелы знания о механизмах применения математический аппарат численных методов	В целом успешные, но содержащие отдельные пробелы понимания физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Общие, но не структурирован ные знания о механизмах применения математический аппарат численных методов	В целом успешно, но не систематически осуществляемые понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	В целом успешное, но не систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на практическую работу. Большинство требований, предъявляемых к заданию, выполнены.
Фрагментарные знания о механизмах применения	Частично освоенное умение о понимании физических явлений и	Фрагментарное применение навыков решения задач	Задание не выполнено

математический	применении законов	моделирования	
аппарат численных	механики,	информационных	
методов	термодинамики,	структур систем	
	электричества и	электроснабжения	
	магнетизма		

Компетенция ПК-1 Способен участвовать в проектировании систем электроснабжения объектов, формируемая и оцениваемая на практических работах

Уровень сформированности этапа компетенции			TC.
Знаний	Умение Навыков		Критерии оценивания
Сформированны е систематические знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	Сформированное умение выбора параметров электрооборудования систем электроснабжения объектов, учитывая технические ограничения	Успешное и систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью и правильно. Отчет по практической работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
Сформированны е, но содержащие отдельные пробелы знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	В целом успешные, но содержащие отдельные пробелы в умении выбора параметров электрооборудования систем электроснабжения объектов, учитывая технические ограничения	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Общие, но не структурирован ные знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	В целом успешно, но не систематически осуществляемые умения выбора параметров электрооборудования систем электроснабжения объектов, учитывая технические ограничения	В целом успешное, но не систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на практическую работу. Большинство требований, предъявляемых к заданию, выполнены.
Фрагментарные знания о выполнении сбора и анализа данных для проектирования систем электроснабжения	Частично освоенное умение выбора параметров электрооборудования систем электроснабжения объектов, учитывая	Фрагментарное применение навыков решения задач моделирования информационных	Задание не выполнено

Ī	объектов	технические	структур систем
		ограничения	электроснабжения

3.2 Критерии и шкала оценивания лабораторных работ

С целью развития умений и навыков в рамках формируемых компетенций по дисциплине предполагается выполнение лабораторных работ, что позволяет расширить процесс познания, раскрыть понимание прикладной значимости осваиваемой дисциплины.

Перечень лабораторных работ, описание порядка выполнения и защиты работы, требований к результатам работы, структуре и содержанию отчета и т.п. представлен в методических указаниях по дисциплине.

Компетенция ОПК-2. Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач формируемая и оцениваемая на лабораторных работах

Уровень сфо	Уровень сформированности этапа компетенции		Критерии оценивания
Знаний	Умений	Навыков	критерии оценивания
	Сформированное умение выбирать и применять законы механики, термодинамики, электричества и магнетизма		Задание выполнено полностью и правильно. Отчет по лабораторной работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
	В целом успешные, но содержащие отдельные пробелы понимания физических явлений и применяет законы механики, термодинамик и, электричества и магнетизма		Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
	В целом успешно, но не систематически осуществляемые понимание физических явлений и применяет законы механики, термодинамик и, электричества и магнетизма		Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на практическую работу. Большинство требований, предъявляемых к заданию, выполнены.
	Частично		Задание не выполнено

освоенное умение о		
понимании		
физических явлений		
_		
и применении		
законов механики,		
термодинамик		
и,		
электричества		
и магнетизма		

Компетенция ПК-1 Способен участвовать в проектировании систем электроснабжения объектов, формируемая и оцениваемая на лабораторных работах

Уровень сформированности этапа компетенции		Гритории опонирация	
Знаний	Умений	Навыков	Критерии оценивания
Сформированны е систематические знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов			Задание выполнено полностью и правильно. Отчет по лабораторной работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.
Сформированны е, но содержащие отдельные пробелы знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов			Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.
Общие, но не структурирован ные знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов			Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на практическую работу. Большинство требований, предъявляемых к заданию, выполнены.
Фрагментарные знания о выполнении сбора и анализа данных для проектирования систем			Задание не выполнено

электроснабжения объектов		

4. Критерии и шкала оценивания результатов обучения по дисциплине при проведении <u>промежуточной</u> аттестации

4.1 Критерии и шкала оценивания результатов освоения дисциплины с экзаменом

Для дисциплин, заканчивающихся экзаменом, результат промежуточной аттестации складывается из баллов, набранных в ходе текущего контроля и при проведении экзамена:

В ФОС включен список вопросов и заданий к экзамену и типовой вариант экзаменационного билета:

Вопросы для проверки сформированности знаний и (или) умений компетенции ОПК-2

- 1. Основные отличия распределения электроэнергии в промышленности от распределения электроэнергии в энергосистемах.
- 2. Основные отличия между электроприемниками и потребителями электрической энергии? Перечислите показатели, являющиеся основными характеристиками электроприемников.
- 3. Классифицикация электроприемников по току, напряжению, частоте, требования по бесперебойности электроснабжения?
- 4. Средняя активная и реактивная нагрузка за максимально загруженную смену? Что такое годовой коэффициент сменности по энергоиспользованию? Как он используется в расчетах?
- 5. Что такое получасовой максимум нагрузки? Как определяется коэффициент максимума активной нагрузки?
- 6. Укажите характерную особенность зависимости коэффициента максимума от коэффициента использования. Как зависит коэффициент максимума от "эффективного числа электроприемников"?
- 7. Как определяются пиковые значения нагрузок электроустановок потребителей? Почему при расчете пикового тока необходимо знать наибольший из пусковых токов двигателей в группе?
- 8. В чем состоит особенность получасового максимума на высших ступенях электроснабжения?

- 9. Как определяется расчетная нагрузка однофазных приемников?
- 10. Какие системы тока и величины напряжений применяются при различных технологических процессах?
- 11. Номинальные напряжения постоянного и переменного токов для питания электроустановок промышленных предприятий? Как проявляется влияние отрасли промышленности на выбор напряжений для питания электроустановок?
- 12. Укажите основные преимущества напряжения 660 В по сравнению с 380 В. В каких отраслях промышленности перспективно применение напряжения 660 В?
- 13. Как решается задача выбора раздельного или совместного питания осветительных и силовых установок?
- 14. Каковы особенности питания электроустановок с резкопере-менными режимами работы?
- 15. Каковы наиболее характерные схемы сетей промышленных предприятий напряжением до 1000 В? Укажите их преимущества и недостатки.
- 16. Перечислите достоинства и недостатки схемы блока трансформатор магистраль.
- 17. Какие схемы используются при напряжении до 1000 В для электроснабжения потребителей I категории?
- 18. Как классифицируются помещения по окружающей среде?
- 19. Какие виды цеховых распределительных устройств напряжением до 1000 В знаете и какова их конструкция?
- 20. Как выполняются сети в помещениях с постоянным и изменяемым расположением технологического оборудования?
- 21. Как выполняются сети в нормальных, пожароопасных, взрывоопасных помещениях?
- 22. Как выполняются сети для передвижных электроприемников -кранов, тельферов и т п ?
- 23. Как выполняются многоамперные сети постоянного тока?
- 24. Каковы особенности выбора сечения проводников в сетях напряжением до 1000 В?
- 25. Как производится выбор месторасположения, числа, типа, мощности цеховых подстанций?
- 26. Каковы особенности размещения цеховых подстанций?
- 27. Чем определяется число трансформаторов на подстанции?
- 28.В чем отличие выбора мощности трансформаторов на одно- и двухтрансформаторных подстанциях?
- 29. Опишите компоновки цеховых трансформаторных подстанций. В чем преимущество комплектных подстанций (КТП)?
- 30. При какой схеме питания подстанции трансформатор подключается только через разъединитель, без предохранителя или выключателя?
- 31.В каких случаях применяются схемы с выключателем нагрузки? Когда выключатель нагрузки применяют с предохранителем и когда без него?
- 32. Укажите достоинства и недостатки преобразователей тока различных типов.
- 33. Каковы основные характеристики ртутных и полупроводниковых преобразователей?

- 34. Укажите области применения различных преобразователей тока в настоящее время и в перспективе.
- 35. Как производится выбор типа, числа и мощности преобразовательных агрегатов?
- 36. Опишите компоновки крупных преобразовательных подстанций.
- 37.В чем особенности компоновки подстанций крупных электролизных установок?
- 38. Какие преобразователи частоты существуют и области их применения?
- 39. Каковы основные характеристики различных преобразователей частота?
- 40. Какими показателями характеризуется надежность системы электроснабжения?
- 41. К каким последствиям приводят перерывы в электроснабжении?
- 42.От чего зависит время фактического простоя потребителя при перерывах электроснабжения? Составляющие ущерба от перерывов электроснабжения?
- 43. Мероприятия по обеспечению необходимой надежности электроснабжения?
- 44. Каковы предельно допустимые значения отклонений и колебаний напряжения на зажимах различных электроприемников, как определяются отклонения и колебания напряжения?
- 45. Как влияют отклонения напряжения на работу асинхронных электродвигателей? Какие приборы для измерения показателей качества напряжения известны?
- 46. Что такое картограмма нагрузок? Для чего она служит? Как выбирается место сооружения ГПП?

Вопросы для проверки сформированности знаний и (или) умений компетенции ПК-1

- 47. Как выбирается напряжение промышленных электросетей выше 1000 В? Каковы принципы построения схем электроснабжения предприятий различных отраслей с учетом категории потребителей?
- 48.В каких случаях для предприятий сооружается собственная ТЭЦ? Какие схемы для распределения электроэнергии на высоком напряжении применяются при наличии ТЭЦ?
- 49. Каковы достоинства радиальных схем распределения электроэнергии? Где они применяются при напряжении выше 1000 В?
- 50. Каковы достоинства и недостатки магистральных схем? Где они применяются при напряжении выше 1000 В?
- 51. Что называется глубоким вводом высокого напряжения? Каковы их достоинства?
- 52. Как выполняются комплектные распределительные устройства, в чем их преимущества?
- 53. Основные компоновки ГПП и ТП промышленных предприятий.
- 54. Каковы схемы присоединения электродвигателей, преобразователей, электропечей и цеховых ТП к сетям напряжением выше 1000 В?
- 55. Как выполняется канализация электрической энергии в сетях напряжением выше 1000 В?
- 56. Каковы конструкции шинных и гибких токопроводов напряжением 6-35 кВ?
- 57. Как выполняется электрический расчет токопроводов напряжением 6-35 кВ?
- 58. Что такое блуждающие токи, каково их влияние на подземные металлические сооружения? Как производится дренаж блуждающих токов?

- 59. Каковы меры защиты подземных сооружений от коррозии блуждающих токов сущность каждого вида защиты?
- 60. Перечислите и охарактеризуйте потребителей реактивной мощности на промышленных предприятиях. Как определяются расчетные затраты на генерацию реактивной мощности?
- 61. Укажите основные причины необходимости мероприятий по повышению коэффициента мощности. Что такое мгновенное и средневзвешенное значения коэффициента мощности и как они определяются?
- 62. Покажите формулой для расчета потерь активной мощности в линии и трансформаторе зависимость этих потерь от передаваемой реактивной мощности.
- 63. Какова формула зависимости потери напряжения от передаваемой реактивной мощности?
- 64. Какие три группы мероприятий по повышению коэффициента мощности вы знаете? Какие мероприятия входят в каждую группу? Охарактеризуйте мероприятия, не требующие специальных компенсирующих устройств (естественные мероприятия).
- 65. Какие источники реактивной мощности применяются на промышленных предприятиях? Охарактеризуйте их.
- 66. Как производится выбор типа компенсирующих устройств и определение их мощности? Как используются статические конденсаторы в распределительных сетях?
- 67. Что такое централизованная, групповая и индивидуальная компенсации? Каковы их достоинства и недостатки?
- 68. Зачем производится автоматизация компенсирующих устройств? По каким параметрам производится регулирование?
- 69. Что такое централизованное и местное регулирования напряжения? Как они определяются? Каковы их достоинства и недостатки?
- 70. Как проводятся измерения и учет потребления и выработки электроэнергии на промышленных предприятиях?
- 71. Для чего предназначен технический учет? Как составляется баланс потребления электроэнергии?
- 72. Как составляется баланс потребления электроэнергии?
- 73. Как определяется наиболее экономичный режим работы трансформаторов и двигателей?
- 74. Каким образом компенсация реактивной мощности приводит к уменьшению расхода электроэнергии? Как получить экономию электроэнергии, применяя глубокий ввод высокого напряжения?
- 75. Как организуют диспетчерскую службу в системах электроснабжения промышленных предприятий и в каких случаях целесообразна ее организация без средств телемеханики?
- 76. Какие объемы телеуправления, телесигнализации и телеизмерений применяются в системах электроснабжения промышленных предприятий?

Ответы на экзаменационные вопросы оцениваются по критериям и шкале, представленным в таблице:

Оценка	Баллы	Критерии оценки ответа на экзамене (пример)		
Отлично	20	Обучающийся глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, не затрудняется с ответом при видоизменении вопроса. Владеет специальной терминологией, демонстрирует общую эрудицию в предметной области, использует при ответе ссылки на материал специализированных источников, в том числе на Интернетресурсы.		
Хорошо	15	Обучающийся твердо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос, владеет специальной терминологией на достаточном уровне; могут возникнуть затруднения при ответе на уточняющие вопросы по рассматриваемой теме; в целом демонстрирует общую эрудицию в предметной области.		
Удовлетвор ительно	10	Обучающийся имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, плохо владеет специальной терминологией, допускает существенные ошибки при ответе, недостаточно ориентируется в источниках специализированных знаний.		
Неудовлетв орительно	Менее 10	Обучающийся не знает значительной части программного материала, допускает существенные ошибки, нарушения логической последовательности в изложении программного материала, не владеет специальной терминологией, не ориентируется в источниках специализированных знаний. Нет ответа на поставленный вопрос.		

Оценка, полученная на экзамене, переводится в баллы (<5> — 20 баллов, <4> — 15 баллов, <3> — 10 баллов) и суммируется с баллами, набранными в ходе текущего контроля:

Уровень сформированности компетенций ОПК-2, ПК-1	Итоговая оценка по дисциплине	Суммарные баллы по дисциплине, в том числе	Критерии оценивания (пример)
Высокий			Выполнены все контрольные точки текущего контроля на высоком уровне. Экзамен сдан
Продвинутый	Хорошо	81-90	Выполнены все контрольные точки текущего контроля. Экзамен сдан
Пороговый	Удовлетворительно	70- 80	Контрольные точки выполнены в неполном объеме. Экзамен сдан
Ниже порогового	Неудовлетворительно	69 и менее	Контрольные точки не выполнены или не сдан экзамен

^{4.2} Критерии и шкала оценивания результатов выполнения курсового проекта

Курсовой проект предусмотренная учебным планом письменная работа обучающегося на определенную тему, помогающая углубить и закрепить полученные знания по дисциплине, приобрести навыки в рамках формируемых компетенций.

Аттестация обучающегося проводится на основании текста курсового проекта и защиты курсового проекта.

Требования к структуре, содержанию и оформлению представлены в методических указаниях к выполнению курсового проекта.

Компетенция ОПК-2. Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач

формируемая и оцениваемая на курсовых работах Уровень сформированности этапа компетенции Критерии оценивания Знаний Умений Навыков Задание Сформированны е Сформированное Успешное и выполнено полностью систематические умение выбирать и систематическое правильно. Отчет по курсовой работе знания о применять законы применение подготовлен качественно в соответствии механики, с требованиями. Полнота ответов на механизмах навыков решения термодинамики, вопросы преподавателя при защите применения задач математический электричества и моделирования работы. аппарат магнетизма информационных численных структур систем метолов электроснабжения В целом Сформированны е, В целом Задание выполнено полностью, но нет успешные, но успешное, но достаточного обоснования или при содержащие содержащие содержащее верном решении допущена отдельные отдельные отдельные незначительная ошибка, не влияющая пробелы знания о пробелы пробелы правильную понимания применение последовательность рассуждений. Все механизмах физических явлений применения навыков решения требования, предъявляемые к работе, и применяет законы выполнены. математический задач механики. аппарат моделирования термодинамик численных информационных И, методов структур систем электричества электроснабжения и магнетизма Общие, но не В целом успешное, Задания В целом успешно, но выполнены частично ошибками. структурирован не систематически но не Демонстрирует средний ные знания о осуществляемые систематическое уровень выполнения задания работу. понимание применение курсовую Большинство механизмах требований, предъявляемых к заданию, применения физических явлений навыков решения и применяет законы задач выполнены. математический моделирования аппарат механики, численных термодинамик информационных структур систем методов электричества электроснабжения и магнетизма Фрагментарные Частично Фрагментарное Задание не выполнено знания о освоенное умение о применение механизмах понимании навыков решения физических явлений применения задач математический и применении моделирования аппарат законов механики, информационных численных термодинамики. структур систем электричества

электроснабжения

методов

и магнетизма

Компетенция ПК-1 Способен участвовать в проектировании систем электроснабжения объектов, формируемая и оцениваемая на курсовых работах

	формируемая и	рсовых работах			
Уровень сфор	мированности этап	іа компетенции	IC		
Знаний	Умений	Навыков	Критерии оценивания		
Сформированны е систематические знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	Сформированное умение выбора параметров электрооборудования систем электроснабжени я объектов, учитывая технические ограничения	Успешное и систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью и правильно. Отчет по курсовой работе подготовлен качественно в соответствии с требованиями. Полнота ответов на вопросы преподавателя при защите работы.		
Сформированны е, но содержащие отдельные пробелы знания о выполнении сбора и анализа данных для проектирования систем электроснабжени я объектов	В целом успешные, но содержащие отдельные пробелы в умении выбора параметров электрооборудования систем электроснабжени я объектов, учитывая технические ограничения	В целом успешное, но содержащее отдельные пробелы применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений. Все требования, предъявляемые к работе, выполнены.		
Общие, но не структурирован ные знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	В целом успешно, но не систематически осуществляемые умения выбора параметров электрооборудования систем электроснабжени я объектов, учитывая технические ограничения	В целом успешное, но не систематическое применение навыков решения задач моделирования информационных структур систем электроснабжения	Задания выполнены частично с ошибками. Демонстрирует средний уровень выполнения задания на курсовую работу. Большинство требований, предъявляемых к заданию, выполнены.		
Фрагментарные знания о выполнении сбора и анализа данных для проектирования систем электроснабжения объектов	Частично освоенное умение выбора параметров электрооборудован ия систем электроснабжени я объектов, учитывая технические ограничения	Фрагментарное применение навыков решения задач моделирования информационных структур систем электроснабжения	Задание не выполнено		

В ФОС включены темы курсового проекта:

- 1. Моделирование схемы электроснабжения металлургического комбината.
- 2. Моделирование схемы электроснабжения ткацкой фабрики
- 3. Моделирование схемы электроснабжения типовой энергосистемы
- 4. Моделирование схемы электроснабжения горного комбината.
- 5. Моделирование схемы электроснабжения цементного завода
- 6. Моделирование схемы электроснабжения тепличного комбината
- 7. Моделирование схемы электроснабжения пивоваренного завода
- 8. Свободная тема по согласованию с преподавателем.

Курсовой проект оценивается по критериям и шкале, представленным в таблице:

Уровень сформированнос ти части компетенций	Оценка	Баллы	Критерии оценивания
Высокий	Отлично	91100	Набрано зачетное количество баллов согласно установленному диапазону
Продвинутый	Хорошо	8190	Набрано зачетное количество баллов согласно установленному диапазону
Пороговый	Удовлетвори тельно	7080	Набрано зачетное количество баллов согласно установленному диапазону
Ниже порогового	Неудовлетво рительно	<70	Зачетное количество согласно установленному диапазону баллов не набрано

5. Задания для внутренней оценки уровня сформированности компетенций

Оценочные материалы содержат задания для оценивания знаний, умений и навыков, демонстрирующие уровень сформированности компетенций.

Контрольные задания соответствуют принципам валидности, однозначности, надежности и позволяют объективно оценить результаты обучения и уровни сформированности компетенций (части компетенций).

Код и наименование компетенции (части компетенции)	Этапы формирования (индикаторы достижений) компетенций	Задание для оценки сформированности компетенции
ОПК-2.4. Применяет математический аппарат численных методов		Тестовое задание
Компетенция ОПК-2	ОПК-2.5. Демонстрирует понимание физических явлений и применяет законы механики, термодинамики, электричества и магнетизма	Тестовое задание

	ИПК-1.1 Выполняет сбор и анализ	Тестовое задание
Karramanna	данных для проектирования	
	систем электроснабжения	
	объектов.	
Компетенция ПК-1	ИПК-1.3 Обосновывает выюор	Тестовое задание
11K-1	параметров электрооборудования	
	систем электроснабжения	
	объектов, учитывая технические	
	ограничения.	

5.1. Комплекс заданий сформирован таким образом, чтобы осуществить процедуру проверки одной компетенции у обучающегося в течение 5-10 минут в письменной или устной формах.

Содержание комплекса заданий по вариантам (не менее 5):

- 1. Электростанции, снабжающие потребителей только электроэнергией, но удаленные от них и передающие вырабатываемую мощность на высоких и сверхвысоких напряжениях.
- А) ТЭС
- В) ГЭС
- С) ГРЭС
- D) КЭС
- Е) АЭС
- 2. Добываемые источники энергии
- А) непосредственно извлекаемые в природе
- В) энергия, заключенная в топливе, кДж/кг
- С) кислород и вода
- D) энергия солнца, ветра, воды
- Е) энергия биомассы
- 3. Энергия, получаемая при использовании тепла недр земли, называется
- А) ветровыми энергоресурсами
- В) солнечными энергоресурсами
- С) гидроэнергоресурсами
- D) биоэнергоресурсами
- Е) геотермальными энергоресурсами
- 4. Предприятие или установка, предназначенные для производства электроэнергии, это
- А) электростанция
- В) энергосистема
- С) трансформаторная подстанция
- D) система электроснабжения
- Е) электрическая система

- 5. Совокупность электроприемников производственных установок цеха, корпуса, предприятия, присоединенных с помощью электрических сетей к общему пункту электропитания, называется
- А) потребителем ээ
- В) приемником ээ
- С) установкой ээ
- D) приводом ээ
- Е) нагрузкой ээ
- 6. Системой электроснабжения называется
- А) Совокупность устройств для производства, передачи и распределения электрической и тепловой энергии потребителям
- В) Совокупность устройств для производства, передачи и распределения электроэнергии потребителям
- С) Совокупность устройств для передачи и распределения электрической и тепловой энергии потребителям
- D) Совокупность устройств для распределения и потребления электроэнергии потребителями
- Е) Совокупность устройств для производства и потребления электроэнергии потребителями

- 7. Электроустановка, предназначенная для преобразования и распределения электроэнергии, это
- А) Электрическая станция
- В) Электрическая подстанция
- С) Приемник энергии
- D) Электрическая сеть
- Е) Линия электропередачи
- 8. Установка, в которой производится, преобразуется, передается, распределяется, потребляется электрическая энергия, это:
- А) Энергоустановка
- В) Приемник энергии
- С) Электроустановка
- D) Потребитель
- Е) Источник энергии
- 9. Энергетические установки, в которых совершается преобразование генерированной энергии в энергию того же вида, но других параметров называются:
- А) аккумулирующие
- В) потребляющие
- С) преобразующие
- D) генерирующие
- Е) механические

- 10. Чем комплектуется ЗРУ ГПП?
- А) отделителем и короткозамыкателем
- В) силовыми трансформаторами
- С) ячейками КСО
- D) ячейками КРУ
- Е) ячейками КСО или КРУ
- 11. Что относиться к устройствам, в которых производится, преобразуется, распределяется и потребляется электрическая энергия:
- А) Трансформаторы
- В) Генераторы
- С) Электрические машины
- D) Электрооборудование
- Е) Электрические станции
- 12. Шинами называют:
- А) провода и кабели
- В) неизолированные проводники
- С) неизолированные проводники и провода, укрепленные на изоляторах
- D) изолированные проводники
- Е) воздушные линии
- 13. Электроаппарат, предназначенный для отключения обесточенной цепи:
- А) отделитель
- В) короткозамыкатель
- С) разъединитель
- D) элегазовый выключатель
- Е) предохранитель

- 14. Разъединители предназначены для
- А) коммутации электрических цепей в нормальном режиме
- В) защиты от перенапряжений
- С) включения и отключения электрических цепей без нагрузки
- D) быстрого отключения отдельных участков при возникших повреждениях
- Е) отключения участка цепи в бестоковую паузу
- 15. Реакторы служат для
- А) Создания видимого разрыва
- В) Отключения электрической цепи в нормальном режиме
- С) Создания искусственного короткого замыкания
- D) Подключения электроприемников к воздушным линиям
- Е) Ограничения токов короткого замыкания

- 16. Назначение трансформаторного масла в высоковольтном маломасляном выключателе
- А) Для гашения вибраций контактов
- В) Для улучшения электрической связи
- С) Для изоляции токоведущих частей
- D) Для гашения электрической дуги
- Е) Для улучшения работы выключателя
- 17. В зависимости от вида энергии, потребляемой первичным двигателем, электростанции могут быть:
- А) тепловыми
- В) гидроэлектростанциями
- С) атомными
- D) газотурбинными
- Е) все вышеперечисленные
- 18. Возобновляемые источники энергии
- А) непосредственно извлекаемые в природе
- В) энергия, заключенная в топливе, кДж/кг
- С) кислород и вода
- D) энергия солнца, ветра, воды
- Е) энергия биомассы
- 19 Энергия, извлекаемая из отходов животноводства, сельскохозяйственного производства и твердые бытовые отходы, называется
- А) ветровыми энергоресурсами
- В) солнечными энергоресурсами
- С) гидроэнергоресурсами
- D) биоэнергоресурсами
- Е) геотермальными энергоресурсами
- 20 Совокупность электроустановок для передачи и распределения электрической энергии, работающая на определенной территории, называется
- А) трансформаторная подстанция
- В) электрическая сеть
- С) электростанция
- D) распределительный пункт
- Е) энергетическая система
- 21. Совокупность электростанций, электрических и тепловых сетей, связанных общностью режима в непрерывном процессе производства, преобразования и распределения электрической и тепловой энергии это:
- А) система электроснабжения
- В) источник питания
- С) энергосистема
- D) распределительное устройство
- Е) система теплоснабжения

- 22. Электроустановка, предназначенная для преобразования электрической энергии одного напряжения в электрическую энергию другого напряжения:
- А) теплоэлектростанция
- В) трансформаторная подстанция
- С) приемный пункт
- D) распределительный пункт
- Е) источник питания
- 7. Группа электроприемников предприятия, объединенная технологическим процессом и расположенная на определенной территории, это:
- А) электроприемник
- В) резервный источник
- С) источник энергии
- D) энергоустановка
- Е) потребитель электроэнергии
- 23. Распределительное устройство генераторного напряжения электростанций или распределительное устройство вторичного напряжения понизительной подстанции энергосистемы или подстанции 35-220 кВ промышленного предприятия, к которому присоединены распределительные сети предприятия это:
- А) источник питания
- В) система электроснабжения
- С) распределительное устройство
- D) энергосистема
- Е) система теплоснабжения
- 24. Энергетические установки, в которых полученная энергия преобразуется в энергию заданного для данного производственного процесса вида и параметра называются:
- А) преобразующие
- В) генерирующие
- С) аккумулирующие
- D) потребляющие
- Е) механические
- 25. Распределительное устройство, предназначенное для приема и распределения электроэнергии на одном напряжении без преобразования:
- А) распределительный пункт РП
- В) приемный пункт ПП
- С) источник питания ИП
- D) трансформаторная подстанция -TП
- Е) электроустановка ЭУ

- 1. Электрический аппарат, предназначенный для переключения участков сети, находящихся под напряжением и создания видимого разрыва, это:
- А) высоковольтный выключатель
- В) отделитель

- С) разъединитель
- D) короткозамыкатель
- Е) предохранитель
- 2. Основное электрооборудование электрических станций:
- А) синхронные генераторы, силовые трансформаторы, компенсаторы
- В) выключатели, разъединители, отделители, короткозамыкатели
- С) трансформаторы тока, трансформаторы напряжения
- D) двигатели постоянного тока, асинхронные двигатели
- Е) линии электропередач, токопроводы
- 3. Как называется устройство для передачи электрической энергии по проводам, расположенным на открытом воздухе и прикрепленным с помощью изоляторов и арматуры к опорам?
- А) кабельные линии КЛ
- В) воздушные линии ВЛ
- С) шинопроводы
- D) токопроводы
- Е) нет правильного ответа
- 4. Короткозамыкатель предназначен для:
- А) ограничения токов короткого замыкания
- В) защиты от токов короткого замыкания
- С) создания искусственного короткого замыкания
- D) отключения электрической цепи без нагрузки
- Е) защиты от перенапряжения
- 5. Расшифровать ОПН:
- А) ограничитель перенапряжения
- В) одноразовый предохранитель наружной установки
- С) однополюсный переключатель напряжения
- D) определитель повышенного напряжения
- Е) нет правильного ответа
- 6. Электрический аппарат, предназначенный для включения и отключения электрической цепи под нагрузкой и в аварийном режиме, это:
- А) разъединитель
- В) короткозамыкатель
- С) высоковольтный выключатель
- D) отделитель
- Е) разъединитель, короткозамыкатель, высоковольтный выключатель, отделитель

1. Электростанция, снабжающая потребителей электрической и тепловой энергии, располагающаяся в районе их потребления:

- А) КЭС
- В) ТЭЦ
- С) ГРЭС
- D) ГЭС
- Е) АЭС
- 2. К возобновляемым источникам энергии относятся
- А) энергия ветра
- В) запасы угля
- С) запасы нефти
- D) запасы природного газа
- Е) запасы торфа
- 3. Основной элемент АЭС?
- А) паровая машина
- В) реактор
- С) двигатель внутреннего сгорания
- D) газотурбинная установка
- Е) котельная установка
- 4. Электроустановка, которая служит для преобразования и распределения электроэнергии это:
- А) Подстанция
- В) Пункт приема
- С) Распределительное устройство
- D) Источник питания
- Е) Электрическая станция
- 5. Электроустановка, которая служит для производства электрической энергии, а иногда одновременно и для выработки тепловой энергии это:
- А) Подстанция
- В) Пункт приема
- С) Распределительное устройство
- D) Источник питания
- Е) Электрическая станция
- 6. Электрическая часть производственной установки, получающая электрическую энергию от источника питания и преобразующая ее в другие виды энергии, называется:
- А) потребителем ээ
- В) установкой ээ
- С) приемником ээ
- D) приводом ээ
- Е) нагрузкой ээ
- 7. Энергосистема это:
- А) совокупность подстанций, электрических станций, электрических и тепловых сетей, связанных между собой непрерывным процессом
- В) нагрузки потребителей, мощности собственных нужд, потери мощности в сетях

- С) энергия мощности генератора, мощности собственных нужд, потерь мощности в сетях
- D) напряжения линии, нагрузок потребителей, мощности собственных нужд
- Е) мощности генератора, нагрузок потребителей
- 8. Совокупность электроприемников производственных установок цеха, предприятия, называется:
- А) электроэнергетическая система
- В) электропотребитель
- С) электрическая сеть
- D) промышленное предприятие
- Е) электрическая станция
- 9. Энергетические установки, в которых потенциальная энергия энергоресурсов преобразуется в тепловую или электрическую определенных параметров называются:
- А) преобразующие
- В) потребляющие
- С) аккумулирующие
- D) генерирующие
- Е) механические
- 10. Расшифровать буквенную аббревиатуру ГПП.
- А) главный переключательный пункт
- В) главный приемный пункт
- С) городской пункт приема
- D) подстанция глубокого преобразования
- Е) главная понизительная подстанция
- 11. Коммутационное электрооборудование электрических станций:
- А) синхронные генераторы, силовые трансформаторы, компенсаторы
- В) выключатели, разъеденители, отделители, короткозамыкатели
- С) трансформаторы тока, трансфотматоры напряжения
- D) двигатели постоянного тока, асинхронные двигатели
- Е) линии электропередач, токопроводы
- 12. Какими выполняют кабели по типу жил?
- А) одножильными
- В) двухжильными
- С) трехжильными
- D) четырехжильными
- Е) все выше перечисленные
- 13. Аппарат, предназначенный для создания искусственного короткого замыкания, называется
- А) Отделитель
- В) Выключатель
- С) Короткозамыкатель
- D) Разъединитель
- Е) Предохранитель

- 14. Аппарат, предназначенный для отключения линии в бестоковую паузу, называется
- А) разъединитель
- В) короткозамыкатель
- С) реактор
- D) отделитель
- Е) выключатель
- 15. Электроаппарат, предназначенный для однократного отключения электрической цепи при коротком замыкании или перегрузке:
- А) короткозамыкатель
- В) предохранитель
- С) реактор
- D) разрядник
- Е) выключатель
- 16. Назначение трансформаторного масла в многообъемных масляных выключателях.
- А) для изоляции токоведущих частей
- В) для охлаждения токоведущих частей
- С) для изоляции и охлаждения токоведущих частей
- D) для изоляции токоведущих частей и гашения дуги
- Е) для гашения дуги

Шкала оценивания комплексного задания

Оценка (баллы)	Критерии оценки <i>(пример)</i>		
5 «отлично»	90-100 % правильных ответов		
4 «хорошо»	70-89 % правильных ответов		
3 «удовлетворительно»	50-69 % правильных ответов		
2 «неудовлетворительно»	49% и меньше правильных ответов		

Сформированность компетенций (этапов) у обучающихся проводится в соответствии с оценочной шкалой.

5.2 Алгоритм, критерии и шкала оценивания сформированности компетенции

Этапы формирован ия (индикаторы достижений) компетенций	Оценочное средство	Результаты оценивания задания	Результат оценивания этапа формирования компетенции	Результат оценивания сформированности компетенции (части компетенций)		
Компетенция ОПК-2						
ОПК-2.4.	Тестовые вопросы 1	От 2 до 5	От 2 до 5 баллов	От 2 до 5 баллов		

		баллов		
ОПК-2.5.	Тестовые вопросы 2	От 2 до 5	От 2 до 5 баллов	
		баллов	От 2 до 3 баллов	
Компетенция	ПК-1			
ИПК-1.1	Тестовые вопросы 3	От 2 до 5	От 2 до 5 баллов	
		баллов	От 2 до 3 баллов	От 2 до 5 баллов
ИПК-1.3	Тестовые вопросы 4	От 2 до 5	От 2 до 5 баллов	От 2 до 3 баллов
		баллов	От 2 до 3 баллов	

Уровень сформированности компетенции в целом или ее части оценивается по шкале от 2 до 5 баллов:

менее 2,5 *баллов* – уровень сформированности компетенции ниже порогового;

2,5-3,4 балла – пороговый уровень сформированности компетенции;

3,5-4,4 балла — продвинутый уровень, компетенция сформирована в полном объеме;

4,5-5 баллов — высокий уровень сформированности компетенции.

Уровень сформированности компетенций (части компетенции)	Характеристика уровня			
Высокий (отлично)	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному. ИЛИ Задание для проверки уровня сформированности компетенции выполнено полностью.			
Продвинутый (хорошо)	- TUNY DE OHEDEDO MINDIAMARILALIM DIACHOM DARROD DEVOTOBLIE DIA			
Пороговый (удовлетворительно)	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки ИЛИ Задание для проверки уровня сформированности компетенции выполнено на 50%.			
Ниже порогового (неудовлетворительно)	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки ИЛИ			

	Задание для	проверки	уровня	сформированности	компетенции н	ıе
	выполнено.					